Ответ: 2.
Второе решение. Известно, что если a≥0, b≥0, то . При этом равенство достигается в том и только в том случае, если
. Тогда
. В нашем случае равенство достигается только при
. При х=0 функция
принимает наименьшее значение. Отсюда получаем, что наименьшее значение исходной функции равно 2 и достигается оно при х=0.
Третье решение. Перепишем формулировку, заданную функцию следующим образом: . В декартовой системе координат рассмотрим точки
. Тогда
1)
2) Точка D расположена на прямой .
З) Значение исходной функции равно сумме расстояний AD+BD.
В таком случае все сводится к решению известной геометрической задачи: на прямой СD найти такую точку D, чтобы сумма расстояний АD+ВD была наименьшей.
Для решения отображаем А симметрично относительно СD. Обозначим новую точку Теперь соединим точки В и
. Расстояние
B и будет наименьшим. Так как АВ=1, А
, то
При этом легко доказать, что прямая
B проходит через точку С.
Четвертое решение. Для определения наименьшего значения применим производную: .
Найдем критические точки: .
Комментарий.
Решая данное уравнение, получаем, что х=0. Исследовав значения производной, приходим к выводу, что в этой критической точке – наименьшее значение функции.
Теперь видно, что стандартное исследование поведения функции по производной достаточно сложно (попробуйте его реализовать). Поэтому подготовка учащихся к ЕГЭ должна предусматривать обучение поиску наибольшего и наименьшего значений без производных (это должно проводиться в 8–10 классах).
Задание 7.
Найдите наименьшее значение функции .
Решение. Сразу видно, что применение производной приведет к серьезным осложнениям. Поступим иначе. Рассмотрим функции и
. Легко убедиться, выделяя квадрат подкоренного выражения и учитывая свойство монотонности функции
, что первая функция имеет наименьшее значение при х=1. Так как
при всех х, то вторая функция имеет наименьшее значение 0, и оно достигается при
, т.е. при х=1+2n,
. Среди чисел вида х=1+2n,
содержится число 1. Отсюда следует, что функции
и
принимают свои наименьшие значения при х=1. Следовательно, исходная функция принимает наименьшее значение при х=1.
.
Драматизация на уроках литературного чтения как фактор развития
эмоционально-чувственного восприятия у младших школьников
В данной главе нам предстоит дать характеристику программе опытного обучения, в качестве которой выбрана программа Р.Н. Бунеева, Е.В. Бунеевой. Объект характеристики – книги для чтения «В океане света» (1 и 2 часть) для 4 класса. Целью программы является не только совершенствовать навыки чтения и а ...
Психологический анализ урока в деятельности педагога
Педагогическая деятельность, как известно, может осуществляться в разных формах, среди которых особое место занимает урок (занятие) - основная организационная единица процесса обучения, где проходит совместная деятельность учителя и учащихся. Анализ урока является одним из важных способов осознания ...
Выявления уровней
сформированности самостоятельной работы младших школьников на уроках
литературного чтения
Выявим уровни сформированности самостоятельной работы и рассмотрим особенности организации самостоятельной работы младших школьников на уроках литературного чтения в школе № 13 г. Череповца в 4А классе, расположенной по адресу: Вологодская обл., г. Череповец, Пионерская ул., д. 11. 1 этап. Выявим у ...
Психологические знания в работе учителя
Как известно, существует внутреннее единство развития психики ребенка и педагогического процесса.