Информация о педагогике » Подготовка школьников к итоговой аттестации в форме ЕГЭ » Упражнения и методические рекомендации для подготовки учащихся к сдаче заданий уровня А

Упражнения и методические рекомендации для подготовки учащихся к сдаче заданий уровня А

Страница 14

Ответ: 2.

Задание 8.

Найти множество значений функции .

Решение. Видно, что применение производной связано с техническими трудностями потому, что уравнение, задающее функцию, достаточно сложное. Предварительно преобразуем уравнение . Введем новую переменную . Так как , то по свойству показательной функции, с основанием большим 1, z принимает все значения, большие 20. Относительно аргумента z уравнение, задающее функцию, принимает вид или , где z>20. При возрастании z знаменатель увеличивается, дробь уменьшается и, следовательно, функция возрастает.

При . Если же z неограниченно возрастает (), то функция приближается к 1, оставаясь меньше 1. Так как функция непрерывна, то она принимает все значения из интервала (0,2; 1).

Ответ: (0,2; 1).

Задание 9.

Найти множество значений функции , заданной на отрезке .

Решение. Известно, что . Так как функция возрастает на отрезке [-1; 1], нечетна и -0,5<-0,25, то или .

Из свойств функции следует, что . Получаем .

Отсюда следует, что на отрезке принимает наибольшее значение при х=0 и это значение равно 1.

Для определения наименьшею значения функции из свойств функции следует, что оно принимается на концах отрезка, и поэтому требуется сравнить значения функции на концах отрезка:

Так как -0,68<, то -0,68 является наименьшим значением функции на .

Так как функция непрерывна на отрезке, заданном в условии, то она на этом отрезке принимает все значения между наименьшим и наибольшим значениями.

Ответ: [-0,68; 1].

Задание 10.

Найти множество значений функции , если .

Страницы: 9 10 11 12 13 14 15

Новые статьи:

Педагогика как наука
Общекультурное и смысложизненное (мировоззренческое) самоопределение личности, а для педагога и профессиональное, предполагает ее ориентацию в глубинных пластах той части культуры человечества, которую составляет педагогика. Она имеет длительную историю, неотделимую от истории человечества. Свое на ...

Психология профессиональной деятельности артиста балета
Как и любая профессиональная деятельность, балет предъявляет определенные требования к личности артиста, уровню развития его психических функций. Так активная двигательная деятельность артиста балета требует полноценного развития таких психических функций, как ощущения. «Большое значение, особенно ...

Понятие «народное образование» и его значение в России
Народному образованию или народному просвещению в энциклопедическом словаре дается следующие определение – это система воспитательных, учебных и культурно-образовательных учреждений и мероприятий и органов управления ими в стране. По структуре и целям имеет исторически конкретный характер, зависит ...

Психологические знания в работе учителя

Психологические знания в работе учителя

Как известно, существует внутреннее единство развития психики ребенка и педагогического процесса.

Разделы

Copyright © 2021 - All Rights Reserved - www.basiseducate.ru