Информация о педагогике » Площади плоских фигур в курсе геометрии основной школы » Психолого - дидактические основы обучения по теме "Площади фигур"

Психолого - дидактические основы обучения по теме "Площади фигур"

Страница 4

Принцип доступности

Осуществление принципа доступности обучения неразрывно связано с выполнением таких правил в обучении: как следовать от легкого к трудному, от известного к неизвестному, от простого к сложному, от частного к общему.

Дидактическое правило "следовать в обучении от известного к неизвестному" связано с осуществлением принципа систематического обучения. Об этом уже говорилось выше. Перейдем к рассмотрению правила: "вести обучение от частного к общему". Для примера рассмотрим следующую задачу:

Задача: Постройте треугольник, равновеликий данному четырехугольнику. Для ее решения полезно рассмотреть более частную задачу.

Задача: Постройте треугольник, равновеликий данному параллелограмму.

Анализ условия задачи приводит к следующему способу ее решения: удвоить высоту параллелограмма, оставив без изменения его основание (удвоить основание параллелограмма, оставив без изменения высоту). Реализация этого способа показана на рис. 7.

Рис.7

У треугольника ABM сторона AM=2AD, а высота его совпадает с высотой параллелограмма. Основание AD треугольника AFD совпадает со стороной параллелограмма, а высота, проведенная из вершины F, в два раза больше высоты параллелограмма на сторону AD. Оба названных треугольника равновелики параллелограмму ABCD.

Заметим, что точки P и Q являются серединами сторон CD и BC параллелограмма. Этот факт обусловливает иной способ решения задачи: Через вершину B и середину P стороны CD проводим прямую до пересечения с прямой AD в точке M или через вершину A и середину Q стороны BC проводим прямую до пересечения с DC в точке F. Если учесть, что P- середина отрезков CD и BM, а Q- середина отрезков BC и AF, то можно указать еще один путь построения треугольников ABM и AFD. Четырехугольники BCMD и ABFC- параллелограммы, значит, точка M лежит на прямой, проходящей через вершину C и параллельной диагонали BD параллелограмма, и на прямой AD. Аналогично можно построить и точку F. Таким образом можно построить 8 различных треугольников, равновеликих параллелограмму ABCD.

Задача: Дана трапеция ABCD (AB║CD). Постройте треугольник, равновеликий данной трапеции.

Попробуем при решении данной задачи воспользоваться способом решения предыдущей задачи. Легко убедиться в том, что такие треугольники можно построить с помощью проведения прямых через вершины трапеции и середины боковых сторон, не содержащих эти вершины (рис. 8).

Треугольники ADL и BCF равновелики трапеции ABCD. Таких треугольников можно построить четыре. Другие треугольники, равновеликие трапеции ABCD, можно построить с помощью проведения прямых, проходящих через вершины трапеции параллельно диагоналям, не проходящим через эти вершины.

Рис.8.

На рис. 9 построены два треугольника, равновеликих трапеции ABCD,- треугольники MCB и ADF. Этот способ позволяет получить еще четыре треугольника, равновеликих данной трапеции.

Рис.9

Теперь перейдем к основной (первой) задаче. При ее решении воспользуемся способом, который был применен при решении двух предыдущих задач.

На рис. 10 построены два треугольника, равновеликих четырехугольнику ABCD,- треугольники AMB и BPC.

Аналогичным образом можно построить еще два треугольника, равновеликих четырехугольникуABCD, проведя через вершину B прямую, параллельную диагонали AC. Проведя через вершины A и C прямые, параллельные диагонали BD, можно получить еще четыре треугольника, равновеликих четырехугольнику ABCD.

Рис.10

Таким образом, решение задачи для частного случая помогло найти путь решения обобщенной задачи. Этот путь можно использовать в различных конкретных ситуациях.

Задача: Постройте треугольник, равновеликий данному пятиугольнику ABCDE.

Рассмотренный способ позволяет преобразовать пятиугольник ABCDE (рис.11) в четырехугольник MBCD, равновеликий данному пятиугольнику ABCDE.

Рис.11

Очевидно, что рассмотренный способ решения основной задачи применим для любого n-угольника: сначала n-угольник превращаем в равновеликий ему (n-1)- угольник, затем последний превращаем в равновеликий ему (n-2)- угольник и т.д. до тех пор, пока не построим треугольник, равновеликий полученному четырехугольнику, а значит, и данному n-угольнику.

Итак, при решении рассмотренной группы задач был осуществлен переход не только от менее общего к более общему, от частного к общему, но и от более общего к менее общему, т.е. не только обобщение, но и конкретизация.

Страницы: 1 2 3 4 5 6 7 8 9

Новые статьи:

Учебный проект как форма организации самостоятельной деятельности учащихся средних классов
самостоятельный деятельность урок информатика Произошедшие в последние годы изменения в практике отечественного образования не оставили без изменений ни одну сторону школьного дела. Новые принципы личностно ориентированного образования, индивидуального подхода, субъектности в обучении потребовали в ...

Теория поэтапного формирования умственных действий
развивающий обучение интенсификация умственный Суть теории: в основе теории лежит идея о принципиальной общности внутренней и внешней деятельности человека. Согласно этой идее, умственное развитие, как и усвоение знаний, навыков, умений, происходит путем интериоризации, т.е. поэтапным переходом «ма ...

Насыщенные монокарбоновые кислоты. Методы получения
Монокарбоновые кислоты получают окислением органических соединений, гидролизом галогенпроизводных, путем превращения металлорганических соединений. Промышленно важным методом является реакция карбонилирования спиртов, эфиров, галогенуглеродов. Известны также многие специфические методы получения ка ...

Психологические знания в работе учителя

Психологические знания в работе учителя

Как известно, существует внутреннее единство развития психики ребенка и педагогического процесса.

Разделы

Copyright © 2024 - All Rights Reserved - www.basiseducate.ru