Информация о педагогике » Площади плоских фигур в курсе геометрии основной школы » Основные дидактические функции задач по теме "Площади фигур" и их реализация в учебном процессе

Основные дидактические функции задач по теме "Площади фигур" и их реализация в учебном процессе

Страница 4

Следующий этап: использование понятия в конкретных ситуациях. На этом этапе прежде всего осуществляется знакомство со свойствами и признаками понятия; с его определениями, эквивалентными принятому; используются изученные свойства и признаки понятия. На данном этапе учащиеся овладевают умениями переходить от понятия к его существенным признакам и обратно, переосмысливать объекты с точки зрения других понятий, в частности учатся переосмысливать элементы чертежа с точки зрения другой фигуры и т.д., а также овладевают различными их совокупностями. На этом этапе важно использование блоков задач, объединенных какой-либо общей идеей. Упорядочение задач может быть осуществлено посредством обобщения и конкретизации, привлечения аналогии, взаимно обратных задач. Блоки задач могут конструироваться следующими способами:

а) результаты решения предыдущей задачи используются в решении последующей;

б) результаты решения предыдущей задачи используются в условии последующей;

в) предыдущие задачи являются элементами последующей;

г) решения совокупности задач осуществляются одним и тем же методом.

Например, при обучении учащихся решению задач с помощью метода площадей целесообразно сделать соответствующую подборку задач из третьей части предлагаемого сборника задач (см. часть 3). Приведем несколько примеров таких задач.

Задача. Стороны треугольника равны a, b, и c. Вычислите высоту h, проведенную к стороне c.

Задача. В треугольнике со сторонами 8 см и 4 см проведены высоты к этим сторонам. Высота, проведенная к стороне 8 см, равна 3 см. Чему равна высота, проведенная к стороне 4 см?

Задача. Докажите, что в любом треугольнике высоты обратно пропорциональны сторонам, к которым они проведены.

Задача. Длины сторон параллелограмма ABCD равны 6 см и 8 см, а высота, проведенная к меньшей стороне, имеет длину 4 см. Найдите длину высоты, проведенной к большей стороне параллелограмма.

Задача. Параллелограмм и прямоугольник имеют одинаковые стороны. Причем, площадь параллелограмма составляет половину площади прямоугольника. Найдите острый угол параллелограмма.

И вообще, чрезвычайно важно показать учащимся, что понятие площади можно с успехом использовать при доказательстве различных теорем и решении задач, причем даже тех, в формулировках которых отсутствует упоминание о площади. Поэтому можно говорить о методе площадей в геометрии. Об этом методе практически не упоминается в школьных учебниках (кроме учебника по геометрии И.Ф.Шарыгина, да и здесь он четко не формулируется, а лишь на конкретных примерах показано его применение). Интересно, что метод площадей оказывается "близким родственником" метода уравнивания, который используется при решении различных геометрических задач (А.Г. Мордкович называет его методом опорного элемента). Он сводится к следующему: одна из величин, не являющаяся искомой выражается двумя способами через данные в условии величины. Такую величину называют опорной. По крайней мере одно из двух выражений опорной величины должно содержать искомое. Тогда, приравнивая два выражения, получают уравнение относительно искомой величины. Сама же опорная величина при составлении уравнения исключается. Если для составления уравнения в качестве опорной величины выбирается площадь, то говорят, что используется метод площадей. Под методом площадей также понимается использование свойств площадей при решении задач и доказательстве теорем. Приведенные выше задачи предлагается решить с помощью метода площадей. Нельзя сказать, что это единственный метод решения предложенных задач. Просто зачастую именно метод площадей дает более изящное, более рациональное решение задачи. Использование метода площадей при решении задач значительно обогатит математическую культуру школьников.

Страницы: 1 2 3 4 5 6 7 8 9

Новые статьи:

Гендерные различия как одно из направлений социального развития
Все окружающие ребенка люди - родители, воспитательницы, учителя - желают ему только добра. Однако мы не всегда задумываемся о том, что делаем, каковы могут быть отдаленные последствия нашего поведения для ребенка. Чаще всего это происходит в тех случаях, когда мы опираемся на устоявшиеся представл ...

Анализ заданий учебника алгебры и начал анализа на соответствие кодификатору ЕГЭ
Будучи на педагогической практике в школе мне пришлось проверять несколько пробных работ по ЕГЭ, которые писали ученики 11 классов. Не все учащиеся смогли справиться с этой работой достойно. В этой связи возникает вопрос, может ли ученик, обучающийся по современным учебникам для 10–11 классов подго ...

Критерии оценки развития изобразительного творчества дошкольников
Во всех определениях творчества отмечается, что это деятельность, в результате которой создаётся новый, оригинальный продукт, имеющий общественное значение. Творчество – условный термин для обозначения психического акта, выражающегося в воплощении, воспроизведении или комбинации данных нашего созна ...

Психологические знания в работе учителя

Психологические знания в работе учителя

Как известно, существует внутреннее единство развития психики ребенка и педагогического процесса.

Разделы

Copyright © 2022 - All Rights Reserved - www.basiseducate.ru