Основы теории площадей

Страница 1

Рассмотрим основные положения теории площадей.

Начнем с определения площади многоугольника. Простым многоугольником называется простая замкнутая ломаная вместе с частью плоскости, ограниченной ею. Будем рассматривать только простые многоугольники, называя их для краткости многоугольниками.

Определение: Рассмотрим множество M всех многоугольников на евклидовой плоскости. Говорят, что установлено измерение площадей многоугольников, если определено отображение S : M→R+ , удовлетворяющее следующим аксиомам:

Если многоугольники F и F’ равны, то S(F)=S(F’).

Если F=F1+F2 , то S(F)=S(F1)+S(F2).

S(P0)=1 , где P0 – квадрат, построенный на единичном отрезке как на стороне.

Положительное число S(F) называется мерой или площадью многоугольника F, квадрат P0- единичным квадратом, а аксиомы 1, 2 и 3 – аксиомами измерения площадей.

Теорема 1: (существования и единственности): В евклидовой геометрии всегда существует отображение S : M→R+ , удовлетворяющее аксиомам 1, 2 и 3, причем если выбран единичный отрезок, то это отображение единственное.

Следствие: При любом способе разложения многоугольника F на конечное множество треугольников сумма площадей этих треугольников одна и та же.

Замечание: В школьном курсе геометрии теорема существования и единственности площади многоугольника не доказывается. Тем не менее теория площадей, изучаемая в школе, имеет определенное значение: она, опираясь на утверждение (которое принимается без доказательства), что существует отображение S : M→R+ , удовлетворяющее аксиомам 1, 2 и 3, дает возможность вычислить площади простейших многоугольников по каким-то данным, и тем самым в школьном курсе геометрии устанавливается единственность измерения простейших многоугольников. Пусть, например, для вычисления площади многоугольника F мы разбили его на треугольники и взяли сумму площадей получившихся треугольников. Понятно, что при разных способах разбиения на треугольники мы получим один и тот же результат. Но почему? В школьной геометрии ответа на этот вопрос нет. Теорема существования и единственности дает четкий ответ: при любом разбиении многоугольника на F треугольники сумма их площадей дает однозначно определенное число S(F). Из этой теоремы, а также из аксиом площади выводятся формулы для вычисления площади любого прямоугольника, параллелограмма, треугольника.

Теорема 2: Если S : M→R+ - отображение, удовлетворяющее аксиомам 1, 2 и 3, то S(P)=xy, где P – прямоугольник, стороны которого равны x и y.

Теорема 3: Если S : M→R+ - отображение, удовлетворяющее аксиомам 1, 2 и 3, то S(T)=xy, где T – треугольник, x – одна из его сторон, а y – соответствующая высота.

Определение: Два многоугольника называются равновеликими, если их площади равны.

Ясно, что равновеликость есть отношение эквивалентности на множестве M всех многоугольников.

Определение: Два многоугольника F и F’ называются равносоставленными, если их можно разложить на одно и то же число соответственно равных многоугольников.

Можно доказать, что отношение равносоставленности тоже является отношением эквивалентности на множестве M всех многоугольников.

Теорема 4: Если многоугольники равносоставлены, то они равновелики.

Замечание: На этой теореме основан метод разложения при вычислении площади многоугольника F: данный многоугольник разлагают на конечное множество многоугольников, таких, чтобы из них можно было "сложить" многоугольник, площадь которого известна. Именно таким способом в школьном курсе геометрии находят формулы для вычисления площади параллелограмма, треугольника, трапеции.

Следующее утверждение является обратным теореме 4.

Теорема 5 (Бойяи-Гервина): Если многоугольники равновелики, то они равносоставлены.

Таким образом, во множестве M всех многоугольников отношение равновеликости совпадает с отношением равносоставленности.

Страницы: 1 2 3

Новые статьи:

Анализ эффективности реализуемых мероприятий
На контрольном этапе нашего экспериментального исследования мы провели повторную диагностику определения уровня восприятия у детей. Результаты данной диагностики приведены в приложениях 5, 6. В процессе организации психолого-коррекционных занятий мы использовали деятельностный принцип, поэтому в ка ...

Результаты педагогического исследования и их обсуждения
Содержание эксперементальной методики профилактики заболеваний ослабленных (часто болеющих) детей младшего школьного возраста на внеурочных формах занятий Методика профилактики заболеваний ослабленных (часто болеющих) детей младшего школьного возраста на внеурочных формах занятий на основе спортивн ...

Последовательность выполнения пейзажа детьми дошкольного возраста
Для того чтобы научить детей правильно рисовать природу необходимо соблюдать последовательность выполнения пейзажа: Начинается с выбора уголка природы, который вы хотели изобразить в своей картине. Пейзаж обычно рисуют с натуры (на пленере), но есть один способ который позволяет это делать и дома ( ...

Психологические знания в работе учителя

Психологические знания в работе учителя

Как известно, существует внутреннее единство развития психики ребенка и педагогического процесса.

Разделы

Copyright © 2025 - All Rights Reserved - www.basiseducate.ru