Рассмотрим основные формы умозаключений, характерные для логического мышления. Таких форм не так уж много: это индукция, дедукция и аналогия. Вкратце их можно охарактеризовать следующим образом. Индукция - это вывод о множестве, основывающийся на рассмотрении отдельных элементов этого множества. Дедукция - это, наоборот, вывод об элементе, основанный на знании определенных качеств того множества, в состав которого он входит. Аналогия - это вывод об элементе (множестве), переносящий на него свойства другого элемента (множества). Проанализируем каждый метод в отдельности.
Индукция
Индукция (лат. inductio - наведение) - процесс логического вывода на основе перехода от частного положения к общему. Индуктивное умозаключение связывает частные предпосылки с заключением не столько через законы логики, а скорее через некоторые фактические, психологические или математические представления.
Различают полную индукцию - метод доказательства, при котором утверждение доказывается для конечного числа частных случаев, исчерпывающих все возможности, и неполную индукцию - наблюдения за отдельными частными случаями наводит на гипотезу, которая, конечно, нуждается в доказательстве. Также для доказательств используется метод математической индукции.
Различают двоякую индукцию: полную (induction complete) и неполную (inductio incomplete или per enumerationem simplicem). В первой мы заключаем от полного перечисления видов известного рода ко всему роду; очевидно, что при подобном способе умозаключения мы получаем вполне достоверное заключение, которое в то же время в известном отношении расширяет наше познание; этот способ умозаключения не может вызвать никаких сомнений. Отождествив предмет логической группы с предметами частных суждений, мы получим право перенести определение на всю группу. Напротив, неполная И., идущая от частного к общему (способ умозаключения, запрещённый формальной логикой), должна вызвать вопрос о праве. Неполная И. по построению напоминает третью фигуру силлогизма, отличаясь от неё, однако, тем, что И. стремится к общим заключениям, в то время как третья фигура дозволяет лишь частные.
Дедукция (от лат. deductio - выведение) - выведение частного из общего; путь мышления, который ведет от общего к частному, от общего положения к особенному; общей формой дедукции является силлогизм, посылки которого образуют указанное общее положение, а выводы - соответствующее частное суждение; применяется только в естественных науках, особенно в математике: например, из аксиомы Гильберта ("две отличные друг от друга точки А и В всегда определяют прямую а") дедуктивным путем можно сделать вывод, что кратчайшей линией между двумя точками является соединяющая эти две точки прямая; противоположностью дедукции является индукция; трансцендентальной дедукцией Кант называет объяснение того, каким образом априорные понятия могут относиться к предметам, т.е. каким образом допонятийное восприятие может оформиться в понятийный опыт; трансцендентальная дедукция отличается от эмпирической, которая указывает лишь на способ образования понятия благодаря опыту и рефлексии.
Изучение Дедукции составляет главную задачу логики; иногда логику - во всяком случае логику формальную - даже определяют как "теорию Дедукции", хотя логика далеко не единственная наука, изучающая методы Дедукции: психология изучает реализацию Дедукции в процессе реального индивидуального мышления и его формирования, а гносеология - как один из основных методов научного познания мира.
Свойства дедукции - это по сути дела свойства отношения выводимости. Поэтому и раскрывались они преимущественно в ходе построения конкретных логических формальных систем и общей теории таких систем. Большой вклад в это изучение внесли: создатель формальной логики Аристотель и др. античные учёные; выдвинувший идею формального логического исчисления Г.В. Лейбниц; создатели первых алгебрологических систем Дж. Буль, У. Джевонс, П.С. Порецкий, Ч. Пирс; создатели первых логико-математических аксиоматических систем Дж. Пеано, Г. Фреге, Б. Рассел; наконец, идущая от дедукции Гильберта школа современных исследователей, включая создателей теории Дедукция в виде так называемых исчислений естественного вывода немецкого логика Г. Генцена, польского логика С. Яськовского и нидерландского логика Э. Бета. Теория дедукции активно разрабатывается и в настоящее время, в том числе и в СССР (П.С. Новиков, А.А. Марков, Н.А. Шанин, А.С. Есенин-Вольпин и др.).
Педагогические условия использования наблюдения в формировании у старших дошкольников
знаний об аквариумных рыбках
Для эффективного формирования знаний об аквариумных рыбках должны соблюдаться педагогические условия организации и проведения наблюдения: 1.Наблюдение за аквариумными рыбками должны составлять законченную серию и демонстрирование разные аспекты жизни рыбок (питание рыб, забота о потомстве, повадки, ...
Методическое использование тестирования В. П. Кузовлевым, Т. Клементьевой,
О. В. Афанасьевой. Анализ учебно-методических комплектов
Изучая методическую литературу различных авторов, мы пришли к выводу, что тестированию как методу контроля умений и навыков английского языка уделяется не слишком много внимания. Поэтому для анализа были выбраны УМК трех методистов, которые, судя по их учебникам, придерживаются разных точек зрения ...
Структура теста
Любой тест имеет в своем составе несколько частей. Это руководство по работе с тестом, тестовую тетрадь с заданиями и, если необходимо, стимульный материал или аппаратуру, лист ответов, шаблоны для обработки данных. В руководстве приводятся данные о целях тестирования, результатов проверки на надеж ...
Психологические знания в работе учителя
Как известно, существует внутреннее единство развития психики ребенка и педагогического процесса.